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Abstract
We study numerically the superconductivity in a system whose normal state is
characterized by the presence of a phenomenological pseudogap, Eg/t , in the
energy spectrum, for 0 � T � T ∗. T ∗ is called the crossover temperature and
it is defined in the high-temperature superconductors (HTSC) where the static
spin susceptibility, χ(T ), is a maximum. At T ∗ one also observes the formation
of a pseudogap in the density of states around the chemical potential (Maier
et al 2002 Preprint cond-mat/0208419). In order to fix ideas, we have chosen
the pseudogap and the superconducting gap to have the same symmetry. We
have adopted the scenario where the pseudogap and the superconducting gap
are independent of each other (Tallon and Loram 2001 Physica C 349 53), for
which the pseudogap enters in the superconducting phase going down to zero
at zero temperature. We have found that ∀Eg/t �= 0 we require a critical value
of the superconducting interaction, V/t , to produce a finite superconducting
critical temperature, Tc/t , and the superconductor order parameter at T/t = 0,
�0/t . These results have been obtained for both µ/t = 0 and µ/t �= 0. We
have obtained a phase diagram, namely, V/t versus Eg/t , at half-filling. We
have compared our results with the analytical calculations of Ţifrea et al (2002
Physica C 371 104), the recent work of Ţifrea and Moca (2003 Preprint cond-
mat/0307362 (2004 Europhys. J. B, at press)) and other relevant theoretical
results.
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1. Introduction

Originally discovered by Bednorz and Müller [1] in 1986, the high-temperature supercon-
ductors (HTSC) are still attracting a lot of interest due to their unusual physical properties,
both in the normal and in the superconducting phases. For example, in the normal state, the
HTSC exhibit a pseudogap in the energy spectrum in the temperature range 0 � T � T ∗. T ∗
is defined by Maier et al [2] as the crossover temperature where the spin susceptibility is a
maximum. There is experimental evidence obtained by the group of Tallon and Loram [3–7]
that the pseudogap persists below Tc/t , independently of the superconducting gap. This inter-
pretation is in agreement with the experiment on energy gap evolution in the tunnelling spectra
of Bi2Sr2CaCu28+δ performed by Dipasupil et al [8]. They find that the pseudogap smoothly
develops into the superconducting state gap with no tendency to close at Tc/t .

Further proof that the pseudogap and the superconducting gap are independent of each
other is given in the experiments of Krasnov et al [9] where, by applying a magnetic field to
their samples, they managed to destroy the superconducting gap while the pseudogap remained.
They conclude that the pseudogap and the superconducting gap coexist in Bi-2212, using
intrinsic tunnelling spectroscopy.

Krusin-Elbaum et al [10] have applied pulsed magnetic fields of higher intensity and they
have studied the H versus T diagram of Bi-2212. They have not been able to close their
pseudogap with pulsed magnetic fields up to 60 T.

The pseudogap (PG) phenomenon has several origins. For example, Fujimoto [11] has
considered the PG in a BCS pairing model with a long but finite interaction range. Vertex
corrections for the self-energy are important in this study. Other authors consider that the
PG is due to phase fluctuations [12–16]. They have succeeded in explaining the pseudogap
observed in ARPES, NMR, and tunnelling spectroscopy experiments. In these studies the
single-particle self-energy is calculated using the t-matrix approximation.

Domanśky and Ranninger [17] consider that the PG has its origin in the boson–fermion
model. Very recently, Kaminski et al [18] have found, using angle-resolved photoemission
experiments with circularly polarized light, that in the pseudogap state, left-circularly polarized
photons give a different photocurrent to right-circularly polarized photons, and therefore the
state below T ∗ is rather unusual, in that it breaks time reversal symmetry [19].

Yanase and co-workers [20] consider that the pseudogap phenomenon is due to
superconducting fluctuations in the Hubbard model. They have implemented the FLEX
approximation and the self-consistent t-matrix approximation.

Since the work of Iguchi et al [21], there has appeared the percolation theory for high-Tc

superconductivity. de Mello and co-workers [22] have put forward this approach in which they
assume that the charge density varies in the sample. Because of that, there is a distribution of
Tc(r). T ∗ is the maximum of all Tc(r).

Posazhennikova and Coleman [23] have studied the quenched disordered formulation of
the pseudogap problem. Their theory of the pseudogap is induced by the fluctuations of the
order parameter. They average the free energy of the pseudogap system over the quenched
disordered distribution of the order parameter.

Prelovšek and Ramšak [24] have obtained the pseudogap both analytically and numerically
using the equation of motion approach for the t–J model of strongly correlated electron
systems. At the level of the self-energy they have decoupled the spin and single-particle
fluctuations. According to their interpretation, the value of the pseudogap temperature is
T ∗ ≈ 2J/3, where the spin susceptibility, χ(T ) has a maximum. They also discuss the
presence of a second crossover temperature, Tsg, which has been identified in connection with
the decrease of the NMR relaxation rate 1/T1 for T < Tsg.
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Vilk and Tremblay [25] have also obtained a single-particle pseudogap in the Hubbard
model using a non-perturbative approach.

Chakravarty, Laughlin, and co-workers [26–28] have proposed a candidate for the
pseudogap order parameter due to orbital antiferromagnetism or d density wave (DDW) order,
which is characterized by a local order parameter that distills the universal physics underlying
the staggered flux state.

In this paper we do not adopt a physical mechanism for the opening of the pseudogap in
the normal state density of states. We rather exploit its consequences for two macroscopic
quantities in the superconducting state, namely, the superconducting critical temperature, Tc/t ,
and the superconducting order parameter at T = 0, �0/t . The reader is referred to [29] where
a general study of critical points in the cuprate phase diagram is considered.

This paper is organized as follows. In section 2, we present the pseudogap model,
following the steps of Ţifrea et al [30]. In section 3 we present our numerical results. In
section 4 we present a discussion and conclusions.

2. The pseudogap model

We assume, as was done in [30], that the PG and the normal one-particle self-energy are related
by the following relation:

�(�k, iωn) ≡ −E2
g G0(�k,−iωn), (1)

where G0(�k, iωn) is the free one-particle Green function and Eg is the width of the PG. �k is
the wavevector and ωn = 2πT (n + 1/2) is the odd Matsubara frequency, with n an integer.
With this choice of self-energy is easy to show that the ‘PG’ Green function is given by

G(�k, iωn) = u2
�k

iωn − E�k
+

v2
�k

iωn + E�k
, (2)

where the notation is the same as that in [30]. In equation (1) we have chosen the pseudogap
of pure s symmetry, since we wish to look for details overlooked in [30]. Later on, we also
consider d wave symmetry as well.

We stress the fact that the authors of [30] did not find critical pairing interactions to have
Tc/t �= 0 and �0/t �= 0. These considerations have been properly taken into account by
Pistolesi and Nozières [31] in a model similar to the present one.

We could include damping effects in equation (2), by making the following substitution:
iωn → iωn + i�, where � is a pure complex quantity, as has been done by Andrenacci and
Beck [32].

Equation (2) is similar to a BCS solution for the pseudogap Green function because we
have adopted a self-energy which is similar to a BCS-like self-energy. In consequence, we are
treating the pseudogap in a BCS approximation.

The superconducting state in the HTSC is assumed to be of the BCS type, due to the
presence of well-defined quasi-particles. The characteristic equation is obtained from the
usual Gorkov equations, with the specification that in our case the normal state one-particle
Green function is given by equation (2). In this way, the two BCS equations will include the
PG effect as follows:

G−1(�k, iωn)G(�k, iωn) + �F†(�k, iωn) = 1

�∗G(�k, iωn) − G−1(�k,−iωn)F†(�k, iωn) = 0,
(3)

where G(�k, iωn) and F†(�k, iωn) are the diagonal and off-diagonal BCS Green functions,
respectively. G−1(�k, iωn) is the pseudogap one-particle Green function given by equation (2).
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This interpretation of the pseudogap phenomenon is equivalent to making the following choice
in the T -matrix approximation [33–35] for the superconducting self-energy:∑

(�k, iωn) =
[

�(�k, iωn) �

�∗ �(�k, iωn)

]
(4)

where �(�k, iωn) is given by our assumption (equation (1)). As we can see, this assumption,
by construction, produces two gaps, one coming for the normal state self-energy and the other
one coming from � in equation (4). Our approach is completely different from that of the

Chicago group [36–39] where they have an effective gap, given by �eff =
√

�2 + E2
g , where

� ≡ �(T ). Their approach is equivalent to taking �/t = 0 in our equation (4) and replacing

�(�k, iωn) by the diagonal self-energy (equation (1)), with Eg →
√

E2
g + �2.

Solving our BCS equation in the presence of the pseudogap (equation (3)), we obtain
for the superconducting one-particle Green functions, G(�k, iωn) and F†(�k, iωn), the following
expressions:

G(�k, iωn) = G−1(−�k,−iωn)

G−1(�k, iωn) G−1(−�k,−iωn) + |�|2
F(�k, iωn) = �

G−1(�k, iωn) G−1(−�k,−iωn) + |�|2 .

(5)

Performing the fraction decomposition, we see that G(�k, iωn) and F(�k, iωn) can be
expressed as

G(�k, iωn) =
4∑

i=1

αi (�k)

iωn − ωi (�k)
(6)

F(�k, iωn) = �

4∑
i=1

βi(�k)

iωn − ωi (�k)
(7)

where

ω2
± = E2

�k +
|�|2

2
± |�|

√
E2

g +
|�|2

4
(8)

E2
�k ≡ ε(�k − µ)2 + E2

g (9)

ω1(�k) = +| ω+| ω2(�k) = −| ω+| (10)

ω3(�k) = +| ω−| ω4(�k) = −| ω−| (11)

and ε(�k) = −2 t [cos(kx)+ cos(ky)] is the free tight binding band in two dimensions and µ the
chemical potential. For all the calculations presented in section 3 we choose t = 1 as our unit
of energy. In equations (6) and (7), the spectral weights, αi (�k) and βi(�k), for i = 1, 2, 3, 4,
are given by

α1(�k) = γ +
1 (�k)[[ω1]2 − [ε(�k)]2]

4� ω1(�k)
√

E2
g + |�|2/4

α2(�k) = γ −
1 (�k)[[ω1]2 − [ε(�k)]2]

4� ω1(�k)
√

E2
g + |�|2/4
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α3(�k) = −γ +
3 (�k)[[ω3]2 − [ε(�k)]2]

4� ω3(�k)
√

E2
g + |�|2/4

α4(�k) = −γ −
3 (�k)[[ω3]2 − [ε(�k)]2]

4� ω3(�k)
√

E2
g + |�|2/4

γ +
i (�k) =

[
u2

�k
ωi (�k) + E�k

+
v2

�k
ωi (�k) − E�k

]−1

γ −
i (�k) =

[
u2

�k
ωi (�k) − E�k

+
v2

�k
ωi (�k) + E�k

]−1

β1(�k) = −β2(�k) = [ω1]2 − [ε(�k)]2

4� ω1(�k)
√

E2
g + |�|2/4

β3(�k) = −β4(�k) = [ω3]2 − [ε(�k)]2

4� ω3(�k)
√

E2
g + |�|2/4

.

From our approach we see that the effective superconducting order parameter in the
quasi-particle spectrum is not given by the Chicago group simple expression. Our effective

superconducting order parameter is given by �eff =
√

2�
√

E2
g + �2/4, which reduces to the

BCS result when Eg/t = 0, namely, �eff = �, as it should.
We have to solve the T/t = Tc/t equation, with �/t = 0, and the gap equation for

� = �0, at T ≡ 0. For the first problem the following equations have to be solved:

1

V
= 1

2 Nx Ny

∑
nx ,ny

φ2(�k)√
[ε(�k) − µ]2 + φ2(�k)E2

g

tanh




√
[ε(�k) − µ]2 + E2

g

2kBTc


 (12)

ρ = 1

2 Nx Ny

∑
nx ,ny


1 − ε(�k) − µ√

[ε(�k) − µ]2 + φ2(�k)E2
g


 tanh




√
[ε(�k) − µ]2 + E2

g

2kBTc


 , (13)

here V/t is the absolute value of the pairing interaction, ρ the carrier density per site and per
spin and µ the chemical potential. The weight function φ is equal to 1 for s wave symmetry,
whereas φ(�k) = cos(kx) − cos(ky) for d wave symmetry. Naturally, other kinds of combined
symmetries could be considered.

In order to obtain the superconducting gap at T = 0 K we have to solve the following set
of equations:

1

Vd
= 1

2 Nx Ny

∑
nx ,ny

1

�0

√
�2

0 + 4E2
g


 A2

0√
[ε(�k) − µ]2 + A2

0

− B2
0√

[ε(�k) − µ]2 + B2
0


 (14)

ρ = 1

2 Nx Ny

∑
nx ,ny

[
α2(�k) + α4(�k)

]
(15)
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Figure 1. Tc/t versus V/t for several
values of the pseudogap parameter,
Eg/t , for the case of pure s wave
symmetry. For Eg/t �= 0 there is a
critical interaction potential, V/t =
V Tc

c /t , below which Tc/t = 0. For
example, for Eg/t = 0.50 we find

V Tc
c /t ≈ 2.25 in units of t . In the

lower panel of this figure we present the
critical interaction as a function of the
pseudogap parameter, when Tc/t → 0.

where

A2
0(B2

0) ≡ E2
g + 1

2

[
�2

0 ± �0

√
�2

0 + 4E2
g

]
(16)

and α2(�k) and α4(�k) are defined as previously.
In the above k-sums we use kx = 2nxπ/Nx and ky = 2nyπ/Ny , with nx = 0, 1, . . . ,

Nx − 1, and ny = 0, 1, . . . , Ny − 1. However numerical solutions for our discrete system in
two dimensions were obtained in an integral form. We have used a relative tolerance of 10−5

to solve equations (12)–(15) iteratively. From these equations we conclude that A2
0 = �2

0 and
B2

0 = 0 when Eg/t = 0. In equations (16), �0 ≡ �(T = 0), i.e., the order parameter at
absolute temperature.

3. Numerical results

3.1. Results for zero chemical potential, i.e. a half-filled band

In figure 1 we present Tc/t versus V/t for several values of the pseudogap parameter, Eg/t ,
for the case of pure s wave symmetry. We observe that there is a critical value of the interaction
potential, V Tc

c /t , for having Tc/t . As we will see in the results for �0/t versus V/t , there is
also a critical value of the pairing potential below which �0/t = 0. In the case of Vc coming
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Figure 2. �0/t versus V/t for several values of the pseudogap parameter, Eg/t (s wave symmetry).

For Eg/t �= 0 there is a critical interaction potential, V/t = V �0
c /t , below which �0/t = 0. For

example, for Eg/t = 0.50 we find V �0
c /t ≈ 3.00. In the lower panel of this figure we have

presented the critical interaction as a function of the pseudogap.

from �0/t → 0, these two critical pairing interactions are different. These critical pairing
interactions were not discussed in [30]. However, they were considered in a similar model by
Pistolesi and Nozières [31].

In figure 2 we present �0/t versus V/t for several values of Eg/t , when the pseudogap
and the superconducting order parameter, at T = 0, have the same symmetry, namely, pure s
wave pairing symmetry. We see that we need a critical interaction potential, V �0

c /t �= 0, when
Eg/t �= 0, in order to have �0/t �= 0. The comments made in relation to figure 1 also apply
here. From figure 2, for Eg/t = 0.50, V �0

c /t ≈ 3.00. Comparing figures 1 and 2, we see that
for a fixed value of Eg/t , V Tc

c /t � V �0
c /t . This straightforward result implies that the ratio

2�0(V , Eg)/kBTc(V , Eg) is well defined only for V � V �0
c /t , for a fixed value of Eg/t .

We have re-done the numerical calculations of the gap equation at T/t = 0, namely,
equation (14), with B0 ≡ 0. Our results are shown in the next figure (figure 3). From this
figure we observe that the critical interaction potential is V �0

c /t = 0, for any value of the
pseudogap parameter. According to the results for �0/t versus V/t , we can re-obtain the
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Figure 3. �0/t versus V/t for several
values of the pseudogap parameter,
Eg/t . Following the approximation
of [30], we have taken B0 ≡ 0.

related results of [30] if we take B0 = 0. However, the critical pairing potential resulting from
the calculations of Tc/t versus V/t is always present in our calculations. This is due to the
presence of the pseudogap at Tc/t (equation (12))4.

In figure 3 we plot �0/t versus V/t for several values of the pseudogap parameter,
Eg/t , when we adopt the approximation of [30], namely, B0 ≡ 0. This approximation
does not produce a critical value of the interaction potential. In consequence, V �0 = 0,
∀ Eg/t . As our equation (12) does not have the presence of the factor B0, we cannot perform
this approximation. Because of this, Tc/t always needs a critical value of the interaction,
∀ Eg/t �= 0.

In figure 4, upper part, we present the superconducting density of states, N (ω) versus ω,
for a fixed value of Eg/t = 0.50 and several values of the superconducting gap, �0/t . (We
have not obtained self-consistency for our equation (12).) With the purpose of speeding up this
calculation, we have approximated the Dirac delta function of the one-particle spectral function,
A(�k, ω), as a Lorentzian. Remember that A(�k, ω) ≡ −(1/π) limδ→0+ Im{G(�k, ω + iδ)} and
that

4 We thank Professor R Micnas and Professor R Frésard for this interpretation.
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(a)

(b)

Figure 4. The density of states, N(ω) versus ω, for (a) a fixed value of Eg/t = 0.50 and several
values of the superconducting gap, �0/t (upper panel), and (b) several values of �0/t at a fixed
value of Eg/t = 0.0 (lower panel). This state is what we call the ‘normal state’ or ‘pseudogap
phase’. However, it should be called a ‘semiconducting phase’ according to [31]. The spectral
density is obtained with the use ofG(�k , iωn) coming from equation (5). The parameter δ/t = 10−5 is
used to approximate the Dirac delta functions of our one-particle spectral density with Lorentzians.

N (ω) = 1

Nx Ny

∑
nx ,ny

A(�k, ω). (17)

From figure 4 we observe that in the superconducting density of states, for Eg/t �= 0, we
have four symmetric peaks around the chemical potential (ω/t = 0). The two internal peaks
are due to the superconducting gap, �0/t , and the peaks further away are due to the pseudogap.
However, the SC peaks have less spectral weight than the PG peaks. These results are similar to
the ones found by Capezzali et al [41, 42] using quantum phase fluctuations for the attractive
Hubbard model. However, we know that in the superconducting state the superconducting
quasi-particles are well defined. This implies that they should have larger spectral weights
than the peaks coming from the pseudogap. This is a drawback of our approximation.
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Figure 5. The phase diagram,
V/t versus Eg/t , for α′ = 0 for
a pseudogap and a superconducting
order parameter with the same
symmetry, namely, s wave symmetry.
These calculations are done at half-
filling. Above the line shown,
we have a BCS-type superconductor.
Below it, we have an insulator-type
material.

We have stated that our density of states is not completely correct if we want to discuss the
HTSC, because in the superconducting phase the weight of the superconducting quasi-particles
must be larger than the weight of the pseudogap. To change this scenario we need to try another
approximation for the pseudogap (equation (1)), probably choosing lifetime effects for it.

At this point, our model is similar to that of [31], since we pass from a semiconductor phase
(full gapped density of states) to a superconducting state as shown in our figure 4. However,
our model is different to that of [31] because they have imposed a cut-off energy around the
Fermi surface. Our calculation is done ∀ �k on the Brillouin zone.

In figure 5 we present the main results of section 3.1. In this figure we have a phase
diagram, namely, V/t versus Eg/t , for half-filling and for s wave symmetry. Above this line
we have a BCS superconductor, with both Tc/t �= 0 and �0/t �= 0. Below this line we have
Tc/t = �0/t = 0, which is a semiconductor-like solution for s wave symmetry.

In consequence, for a finite pseudogap Eg we need a minimum pairing interaction V in
order to create a superconducting state. This is due to the fact that our electronic structure,
with Eg �= 0, corresponds to an insulator [46]5, so we need a finite pairing attraction in order
to promote two electrons to the chemical potential, so that they can get paired. Furthermore,
�0 ≡ 0 → Tc ≡ 0, since �0 is a factor multiplying both sides of the self-consistent equation
which is used to evaluate both Tc and �0. In other words, the fact that �0 = 0 implies that Tc

is zero, by definition. This is the criterion used in figure 5.

3.2. �(T ) versus T/t for both s and d symmetries at half-filling

The results presented here will not change the main conclusions of this paper for the case
when both order parameters have d symmetry, where φ(�k) = cos(kx) − cos(ky). In figure 6
we present Tc/t versus V/t (upper panel) and �0/t versus Vd/t (lower panel) at Eg/t = 0 for
both pure s wave and dx2−y2 symmetry (cos(kx) − cos(ky)). The only difference that we see
with respect to the pure s wave symmetry case is the different values of the superconducting
critical temperature, Tc/t , and the superconducting order parameter, �0/t . The results for

5 Due to the presence of a phenomenological pseudogap, we have found that we have a ‘metallic’ phase, which is
the one present in figure 5, in the region where �0 = 0.
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Figure 6. Tc/t versus V/t (upper
panel) and �0/t versus V/t (lower
panel) at Eg/t = 0 for two
different order parameter symmetries.
‘s wave’ means the pure symmetric
order parameter and ‘d wave’ refers to
the dx2−y2 symmetry order parameter.
See the text for more details.

Eg/t = 0 for the d wave symmetry order parameter are at odds with the ones published by den
Hertog [40] and Soares et al [43]. However, our results are in agreement with [44, 45]. In the
lower part of figure 4 we present the normal state density of states, namely, when �/t = 0.
For this density of states we see only a gap, i.e., the one due to the presence of the pseudogap.

Let us try to understand why we have �(T ) = 0 for T = 0 in figures 7 and 8. In
those figures, we see some kind of re-entrant superconductivity. In order to understand this
behaviour, for the case of d wave symmetry, we present in figure 9 A2(�0) versus � and
B2(�0) versus �0. These two quantities are the two contributions (after summation is carried
out) which appear in equation (14) (the gap equation). From this figure, we observe that at
both limits the two factors cancel out. However, the first factor is always dominant for most
values of �0. In consequence, for small values of �0 and increasing values of Eg/t the two
contributions cancel each other and we need strong values of V/t to overcome the pseudogap.
Then, the vanishing of the order parameter, for Eg/t = 0, at T = 0 is due to the presence
of these subtracting factors. This is the origin of the re-entrant superconductivity, which is a
major consequence of the presence of the pseudogap.

In order to justify figure 5, we now include figures 7 and 8. In figure 7 we plot �(T )/t
versus T/t , for s wave symmetry, for Vd/t = 2.5 for several values of Eg/t . We observe
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Figure 7. �(T )/t versus T/t , when
V/t = 2.50, for s wave symmetry
and half-filling. Here we have chosen
Eg/t = 0.10, 0.20, 0.25, 0.30, 0.35,
0.50. From this figure we observe that
the critical interaction is between 0.35
and 0.50.

Figure 8. �(T )/t versus T/t , when
V/t = 2.50, for d wave symmetry
and half-filling. Here we have chosen
Eg/t = 0.10, 0.20, 0.25, 0.30, 0.35,
0.50, 1.00. From this figure we observe
that the critical interaction is between
0.50 and 1.00.

that �(T ) ≡ 0 for Eg/t = 0.50. In figure 8 we present �(T )/t versus T/t , for d wave
symmetry, V/t = 2.5, for several values of Eg/t . In the last figure we observe that �(T ) ≡ 0
for Eg/t = 1.00.

Let us recall that the value of Tc/t is obtained from the gap equation, when �(T )/t →
0+ �= 0. In the case where �(T ) = 0, as in the case of s wave symmetry shown in figure 7
(Eg/t = 0.5) and in figure 8 (Eg/t = 1.00) for d wave symmetry, we are allowed to define
Tc/t ≡ 0. In consequence, when �(T ) = 0, Tc = 0. In consequence, this is the argument
used to construct figure 5.
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Figure 9. A2(�0) versus � and B2(�0)

versus �0, for d wave symmetry, at µ = 0,
for different values of Eg/t , namely Eg/t =
0.1, 0.3, and 0.5. We see that the first factor,
i.e., A2(�0), is almost always greater than
the second factor, namely, B2(�0). Only for
small and large values of �0 do they tend to
be equal.

3.3. Results taking into account a non-zero chemical potential

In this subsection we present results obtained when we consider values of the chemical
potential, µ, that are different from zero, corresponding to various band fillings.

In figure 10 we present the superconducting critical temperature, Tc/t , versus ρ and µ/t
versus V/t , with the pseudogap parameter Eg/t = 0.10, for several values of the pairing
potential, namely, Vd/t = 1.50, 2.00, 2.50, and 3.00, for the case of pure s wave symmetry.
We observe that Tc/t is symmetric around half-filling, namely, for ρ = 0.50. We also observe
that Tc/t �= 0 in a certain window of carrier concentration.

In figure 11, we present Tc/t versus V/t , for ρ = 0.90 and several values of the
pseudogap, namely, Eg/t = 0.10, 0.20, 0.30, 0.40, and 0.50. For example for Eg/t = 0.10,
V Tc

c /t ≈ 2.35. For Eg/t = 0.4 and 0.5, Tc = 0. These results are in agreement with those of
section 3.1, i.e., when we do not have self-consistency for the chemical potential.

In figure 12, we present Tc/t versus Vd for ρ = 0.50, for several values of the pseudogap
parameter, namely, Eg/t = 0.10, 0.20, 0.30, 0.40, and 0.50, for the case of pure d wave
symmetry. In this case �0(�k) = �0(cos(kx) − cos(ky)). We see that for ρ = 0.50, the
chemical potential is pinned at µ/t = 0. If we compare these results with the ones of
figure 10, we observe that T d

c � T s
c , for the same values of V/t and Eg/t . Also, we observe

that Vc ≈ 2.30, for d wave symmetry with Eg/t = 0.1.

4. Discussion and conclusions

In this paper we have considered the pseudogap and the superconducting order parameter to
have the same symmetry, namely, either s wave or d wave symmetry. This is a reasonable
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Figure 10. Tc/t versus ρ for
the pseudogap parameter, Eg/t =
0.10, for several values of the
pairing potential, namely, V/t =
1.50, 2.00, 2.50, and 3.00, for the case
of pure s wave symmetry. Tc/t goes up
for larger values of V/t .

scenario since it has been shown that the observed symmetry of the order parameter cannot be
fitted with just the lowest harmonics of the d wave order parameter [47–50]. Furthermore, a
recent experiment with twisted Josephson junctions in the Bi cuprates [51] favours an extended
s wave order parameter, and has shown the absence of a d wave part in the order parameter.
Leaving aside controversial issues, we have adopted the point of view that the pseudogap and
the superconducting order parameter have the same symmetry. With this point of view in mind
and following the model of Ţifrea et al [30], we have studied their model to treat delicate
points such as the critical interaction potential.

We have chosen a free tight binding model given by nearest neighbours (nn; see the
discussion after equations (8)–(11)). However, we could include next nearest neighbour (nnn)
hopping, as was done by Soares et al [43] and Tobijaszewska and Micnas [52]. In [43], the
nnn hopping parameter, t ′, has been used to study the crossover between the BCS regime and
the BEC limit, while in [52], the next nearest neighbour hopping parameter has been used to fit
Uemura-type [53–55] plots, i.e., critical temperature versus temperature phase stiffness plots.
Other authors [56] have used the t ′ hopping term to fit Tc/t and the isotope exponent, α, in the
different cuprate families. In consequence, the nnn hopping parameter should be taken into
account in future calculations.

We repeat that our approach is different from that of the Chicago group. For example,
Kao et al [39] have plotted the density of states, at T/t = 0, for both the intrinsic and extrinsic
schools of the pseudogap (see [39] for details). Their two densities of states are completely
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Figure 11. Tc/t versus V/t for
ρ = 0.90, for several values of the
pseudogap parameter, namely, Eg/t =
0.10, 0.20, 0.30, 0.40, and 0.50, for the
case of pure s wave symmetry. We observe
that for Eg/t = 0.4 and 0.5, Tc = 0.

different to the ones presented here in figure 2 (lower panel). This implies that their approach
and that of the present work are completely different, as was pointed out in section 2 (refer to
the discussion about the t-matrix formulation around equation (4)).

As we have said in section 3.1, �0/t = 0 due to the fact that the system behaves as an
insulator. This being so, we need to have a finite pairing interaction in order to promote two
electrons to the chemical potential so that they can form a pair and that �0/t �= 0.

When Eg/t = 0, R ≈ 3.5 in the BCS approximation,with R ≡ 2�0(V , Eg)/kBTc(V , Eg).
We end up by saying that in [30], even though this is for a superconductor order parameter with
d wave symmetry, they do not find our critical interaction. We have implemented numerical
calculations for d wave symmetry (see figure 12) and the results are qualitatively similar, even
though there are some quantitative differences. The authors of [30] have recently applied their
pseudogap model to calculate the specific heat behaviour of high-temperature superconductors
in the underdoped regime [57]. Let us recall that they have done self-consistent calculations for
the order parameter. However, they have not considered the effect of the chemical potential.
The presence of the pseudogap down to T = 0 K produces metallic regions in the ground state,
for s and d wave symmetries [58], which are absent in the model discussed in [44, 45]. We
have also seen that the results for sections 3.1–3.3 are consistent, since they produce a critical
attractive interaction.

In summary, we have numerically implemented a model which has a pseudogap (really,
it is a semiconductor gap, since damping effects have been neglected in our calculations) in
the one-particle energy spectrum of quasi-particles in the temperature range 0 � T � T ∗.
We have investigated the effect of Eg/t on the two basic parameters of the BCS theory, Tc/t



338 J J Rodrı́guez-Núñez et al

Figure 12. Tc/t versus V/t for
ρ = 0.50, for several values of the
pseudogap parameter, namely, Eg/t =
0.10, 0.20, 0.30, 0.40, and 0.50, for the
case of pure d wave symmetry.

and �0/t . We have found that for Eg/t �= 0 a critical pairing potential emerges from our
calculations, since �0/t = 0 implies that Tc/t = 0. In consequence, in order to define the
ratio R ≡ 2�0(V , Eg)/kBTc(V , Eg) we need to work with �0/t � 0. Figure 5 represents the
main results of the present work. See also the discussion after figures 7–9 which explains the
phase diagram presented in this paper. We have also found that the critical potential is valid
for both µ/t = 0 and µ/t �= 0. In this paper we have not considered the effect of impurities,
i.e., dirty superconductors, as was recently done by Dahm et al [59], for Bi2Sr2CaCu2O8.
However, Kaminski et al [60] have studied the anisotropy of the scattering rate in cuprate
superconductors for the same compound, adopting the following expression for the scattering
rate: Im � = a + bω. They say that the anisotropy is probably not due to impurity scattering,
but rather related to the same interaction as gives rise to the pseudogap. Without touching
these delicate points (probably valid around the Fermi surface or along certain directions in the
Brillouin zone), we remark that the consequence of adopting a pseudogap as is done in [30]
is the presence of a critical interaction for obtaining superconductivity, for both s and d wave
symmetries.
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